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Bus Bar Design 
 
 
This document describes rule-of-thumb design laws for unconfined bus bars 
operating at or near dc conditions in open space. At higher frequencies the “skin 
effect” must be considered. In multiconductor systems (such as magnet coils) the 
“proximity effect” must be accounted for and the thermodynamics gets tougher. In 
modern power electronics based equipment switching at high frequency, all of these 
effects occurring simultaneously contribute to the conductor heating. 
 
Theoretically it is possible to go into this subject in great depth and consider the surface 
emissivity, air properties and movement, radiation, convection, and conduction for 
different geometry’s in differing orientations; this is not the approach taken here. 
 
This note describes a practical rule-of-thumb for the conductor surface heat transfer limit 
and from it derives some useful design relationships. Experimentally, it is found that bus 
bars run near room temperature when the heat transfer is limited to 0.1 (Watts/in2). The 
bus bars run hot when the heat transfer approaches 0.25 (Watts/in2). (note: since the bus 
bar temperature is principally a function of the surface area, the best shape is a very thin 
ribbon whereas the worst shape is cylindrical as are all wires!). Using this empirical 
knowledge, rule-of-thumb design relationships can be established. 
 

1. (Power Lost)/(Unit Length) in (Watts/cm) 
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where; 

 
𝝆 : resistivity in (Ohms*cm),  Ac : Conductor crossectional area in cm2,  Io : Amperes 
 

2. (Heat Transfer)/(Unit Area) in (Watts/cm2) 
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where; 

 
As: conductor surface area in (cm2/unit length) 

	
  



	
  
	
  

3. Rules-of-Thumb boundary conditions for heat transfer limits 
 

0.1≤QA ≤ 0.25   expressed in Watts/in2 

 
0.015≤QA ≤ 0.04   expressed in Watts/cm2  

 

cool → hot 
 

AcAs =
Io
2ρ
QA

 with QA expressed in Watts/cm2 

 
 

4. Rectangular Bus Bar 
 

 
 

AcAs = 2 w+ h( ) wh( )  
 

hence: 
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if w >>h as is typical then: 

 

w = AcAs
2h
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4. Rectangular Bus Bar
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5. Cylindrical Bus (like wire) 
 

 
 

AcAs = πr
2 *2πr = 2π 2r3  

 
hence: 
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6. Test against known values 
 

The following table illustrates the use of this formulation versus NEC data for 
confined and unconfined cables rated at 90 degrees Celcius. 

 

 

5. Cylindrical Bus (like wire)
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